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Hybridisation procedur e and data analysis of a custom made
microarray including 500 genes. a quality affirmation

Anna Svensson

Sammanfattning

Microarrays (sk. genchip) & kraftfulla verktyg med vars hjélp man kan studera uttrycket hos
ett stort antal gener i en och sammaanays. Ett genchip best& av korta DNA sekvenser som
representerar olika gener, vilka placerats pa et substrat av glas. Den relativa skillnaden
mellan tva mRNA-prov understks genom att méta hur val dessa basparar till sekvensernapa
genchipet. Genchip genererar tora méngder data, vilka maste bearbetas i flera steg. Forst
utfors en normalisering, for att avlagsna systematiska skillnader och pévisa biologiska
skillnader mer tydligt. Dérefter behGver man ett statistiskt verktyg for att hitta gener med
foréndrat uttryck.

Innan proven f& basparatill genchipet mérks respektive RNA-prov in med tva olika
fluorescerande farger. Hur v dennainmérkning har lyckats bor métas for att forsskrasig om
pditligarddata. Vid forsta steget i den efterfdljande dataanalysen fungerar normalisering med
loka linjar regression. For att sedan avgora vilka gener som har et sgnifikant 8ndrat uttryck
kan man utnyttja négon form av modifierat t-test, t ex SAM och Bayes.

Ovanstdende dataandys har testats och visat sig fungerava pa biologiska data, en
undersdkning av hur geners uttryck forandras efter tre veckors styrketréning. Kunskapen om
hur genuttrycket i human muskel paverkas av styrketréning & fortfarande mycket bristfallig,.
Forhoppningsvis kan nyttjandet av nya molekylarbiologiska metoder, som t ex genchip, leda
till en okad forstéelse inom detta omrade.

Examensarbete 20 p i civilingenj6r sprogrammet Molekylar bioteknik

Uppsala universitet februari 2003
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1. BACKGROUND

1.1 Microarray technology

A gene conssts of asegment of DNA which encodes a particular protein, the ultimate
expresson of genetic information. A deoxyribonucleic acid or DNA moleculeis adouble-
stranded polymer composed of four basic molecular units called nucleotides. Each nucleotide
comprises a phosphate group, a deoxyribose sugar, and four nitrogen bases. The four different
bases found in DNA are adenine (A), guanine (G), cytosine (C), and thymine (T). The two
nucleoctide chains are held together by hydrogen bonds between nitrogen bases, with base
pairing between G and C, and A and T respectively. The expression of genetic information
stored in DNA is atwo-stage process. (i) transcription, during which DNA is transcribed into
messenger ribonucleic acid or mRNA, asingle stranded complementary copy of the base
sequence in the DNA molecule, with the base uracil (U) replacing thymine (ii) trandlation,
during which mRNA’s nucleotide triplets are trand ated to amino acids specified by the
genetic code. There are twenty different amino acids building up the proteins of the cdl (1).

Microarrays are powerful tools enabling the study of the expression levels of thousands of
genes smultaneoudy. Gene expression is analysed at the transcription stage, i.e. on mRNA
level. Although regulation of protein synthessin acdl can teke place & any leve inthe
process from DNA to protein, mRNA levels may sendtively reflect the type and Sate of the
cdl. Microarrays make use of DNA molecules property of complementary base-pairing.
Hybridisation refers to the annealing of nudeic acid strands from different sources according
to base-pairing rules. To utilise the hybridisation property of DNA, complementary DNA or
cDNA is obtained from mRNA by reverse transcription (2).

cDNA microarrays are composed of individua DNA sequences, spotted on a high-dengty
subgtrate of glass or nylon, aso-cdled chip. The relative difference between two RNA
samples may be assessed by monitoring the differentid hybridisation of the two samplesto
the sequences in the spots on the array. The samples, or targets are reverse-transcribed into
cDNA, labelled using different fluorescent dyes (e.g. ared- fluorescent dye Cy5 and a green
fluorescent dye Cy3), then mixed and hybridised with the spotted DNA sequences or probes
(2,3).
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Fig 1. A cDNA microarray experiment, from RNA isolation to image analysis.
(The illustration was used with permission from Barry, R. FAO http://www.fao.org/DOCREP/003/x6884e03.htm, 1 Sep. 2002)




After this compstitive hybridisation, the dides are imaged using a scanner and fluorescence
measurements are made separately for each dye at each spot on the array. The ratio of the
fluorescence intengity for each spot isindicative of the relative abundance of the
corresponding DNA sequence in the two nucleic acid samples (2). The different stepsin the
microarray experiment procedure areillugtrated in Fig. 1.

The microarray-technique has awide range of applications including comparison of
expression profiles after various drug trestments, classfication of tumour cells, learning
which genes are used in different cdl types, studying gene expression during development (2)
or: investigation of how expression profile change after a short period of strength training.

1.1.1 cDNA labelling

Various labdling sysems labd differently. The firgt step in the labelling procedure involves
reverse-transcription from mRNA to cDNA. Hereit is of great importance to use an efficient
enzyme, which may reduce the amount of RNA required per reaction by more than a tenfold.
When working with limited quantities of RNA it is of course enormoudy advantageous to
make it possible to, for instance, use 2 instead of 20ng RNA (4).

Handling of the CyDyes d<0 affects the labdling efficiency. One should dways minimize the
exposure of the dyesto dl light sources by wrapping tubes in duminium fail, if possble turn
off the light in the lab and not store diluted pouches of dye longer than necessary (4).

It isdso essentid to have ahigh degree of evenly labelled targets. This can be achieved with
an indirect labelling procedure; during cDNA synthess, aminoalyl-modified dUTPs are first
incorporated into the cDNA molecule. Next, in the coupling step, fluorescent dyes react with
the modified dUTPs (Fig.2) (5).
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Fig 2. cDNA labelling. The indirect labelling procedure
(The illustration was used with permission from Hogarth, P.
ClonTech, Inc. http://www.clontech.com/archive/JANO2/Powerscript.shtml, 1 Sep 2002.)




A disadvantage with indirect labelling isthat it is quite time consuming. An dterndive isto
use direct labdling, where firg-strand cDNA is generated with dye-dNTP conjugate in one
step. Because of their large size, dNTP conjugates are not efficiently incorporated for some
dyes — particularly Cy5- potentidly resulting in dye-biases (2,6).

Whatever |abelling method chosen, the amount of CyDye in the samples should be measured
before hybridisation. Knowing how much labelled materia has been made will hdp in setting
up correct and more reproducible hybridisation reactions and you do not risk wasting
expensive microarray dides with substandard targets (4). Thisismogt easly carried out by a
spectrophotometer, measuring the absorbance at 550 nm for Cy3 and 650 nm for Cy5. The
Nanodrop™ND-1000 Spectrophotometer alows measurements with 1 sample volume and

can detect Cy3 and Cy5 at concentrations as low as 0.1 pmol/m (Fig. 3) (7).
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Fig 3. Dye label measurements Picture from the software connected to the Nanodrop” “ND-1000 Spectrophotometer. On the
screen, the green vertical line represents the peak wavelength position for Cy3, and the red line corresponds to the Cy5 ditto.
This is a case of higher concentration of Cy3

(The illustration was used with permission from Stewart, J.

NanoDrop, Inc. http://www.clontech.com/archive/JANO2/Powerscript.shtml, 1 sep 2002.)

1.1.2 Scanning and data extraction

In the first step of image andlysis, the hybridised arrays areimaged using a scanner. GenePix?
4000B uses adua laser to scan the microarray at two wavelengths smultaneoudy, 532nm for
detecting Cy3 and 635nm for Cy 5. The user adjuststhe PMT (photo multiplier tubes) until
the brightest spots are just below saturation (2 *° = 65 500), thus increasing the sensitivity of
the image analysis for the wesaker spots. Experiments with scanning adide a varying PMT
levels, however suggests that this has a negligible effect on the log-ratios and the ranking of
genes (8, 9).

The red and green fluorescence intengties are dready highly processed data. There are many
dternatives for soring the output from amicroarray experiment, but storing of the raw image
files retains maximum information, alowing the use of different image extraction and qudity
metrices to be used subsequently (2).

Image processing is required to extract measures of transcript abundance for each gene
spotted on the array from the laser scan images. The software GenePix Pro 4.0 is used for
finding the spots and quantifying the Sgna intengties. Spots (or features) are grouped into
rows and columns to form a block. Blocks are themsaves grouped into rows and columns to
form atemplate of the array. This template is then automaticaly aigned with the features on



theimage (Fig. 4). The user must however manualy check each spot and when necessary
change their Sze or location. The user can dso decide to flag odd looking features as “bad’

(8).
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FIG 4. Data extraction software The GenePix Pro 4.0 user interface
1.1.3 Data displays

Microarray datais often logged for a number of reasons, i.e. the variation of logged
intengties and ratios of intenstiesis less dependant on absolute magnitude, it makes
normalisation additive and taking logs evens out skew distributions (10,11). Using unlogged
data means that genes that are up-regulated by afactor 2 have an expression ratio of 2,
whereas those down-regulated by the same factor have an expression ratio of (-0.5), resulting
in al the down-regulated genes “ squashed” between 1 and 0. By contrast, logarithms, which
treat numbers and their reciprocas symmetrically, aso treat expression ratios symmetrically.
Up-regulated by afactor of 2 haslog(ratio) of 1, whereas a down-regulated gene by afactor
of two has alog(ratio) of —1. Genes expressed at a constant level (with ratios of 1) has
log(ratio) of 0 (12).

Expresson data can be displayed by plotting the log intensity logR in the red channd vs. the
log intengty logG in the green channd. This might however make interesting fegtures of the
data hard to see. An dternative choiceisto plot log intengty ratio M= log(R/G) vs. the mean
intensity A= logpQ(R*G) (=0,5(logxR+ logxG)), which fadilitates the identifying of spot
artefacts and detecting intendity dependent patternsin the log ratios (Fig. 5) (11).
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Fig 5. Data displays. When wanting to compare two sets of numbers such as R and G varying over a large range, it is useful to
compare logz R with logz G by plotting their difference logz(R/G) against their average (¥2)log. R*G. Doing this we might see
something unexpected. By contrast, plotting R against G is typically much less revealing and can give a false unrealistic sense
of concordance.

(The illustration was used with permission from Speed, T. http://www.stat.Berkeley.edu/users/terry/zarray/Html/log.html, 2 Nov
2002)

1.2 Normalisation

The purpose of normalisation isto minimize methodological varigions in the measured gene
expression levels, to display biologicd differences more clearly and to alow between dide
comparisons. Sources of systematic variation are different labeling efficiencies and dye label
concentrations, scanning properties of the dyes and print-tip or spatid effects on the chip.
(13-15). Imbaancein the red and green intensities is easily observed when two identical
MRNA samples are |abelled with different dyes and hybridised on the same dide. In thiskind
of experiment the red intengities tend to be lower than green intengties and the magnitude of
the difference may depend on overdl intengty A, resulting in a curvature in the MA-plot
(10,14).

1.2.1 Selecting genesfor normalisation
Whatever normdisation method used, which set of genes to use has to be chosen:

All the genes on the array

Using dl the genes on the chip for normaisation is reasonable when one assumes tota gene
expression to be approximately equd in reference and sample, i. e. only arddivey smdl
fraction of the genes will be Sgnificantly differentially expressed. Furthermore one assumes
that there is symmetry between up- and down regulated genes, making these changes baance
out.



Housekeeping genes

Another gpproach isto select a subset of genes onthe array for normadisation, traditionaly so-
called housekeeping genes. These genes are believed to have constant expression across a
variety of conditions (e.g. b-actin). In practice such genes are unfortunately very difficult to
identify. It may however be possible to find “temporary” housekeeping genes, i.e. geneswith
congtant expression for particular experimenta conditions. A limitation with housekeeping
genesisthat they tend to be highly expressed, not alowing the estimation of dye-biaswhen
thisisan intendty dependant factor (14,15).

Controls

A third dternativeis to use spiked controls or atitration series of control sequences. In the
spiked controls method, synthetic DNA sequences or DNA sequences from an organism
different from the one being studied are spotted on the array and included in the two different
MRNA samples at equa amount. On the micrroarray, these spots should have equa red and
green intengities and could thus be used for normdisation. (14,15).

1.2.2 Nor malisation methods

Normalisation can be based on anumber of principles, some of which are better than others.
The most widdly used methods are;

Global normalisation

Globa normalisation assumes that red and green intendties are related by a congtant factor. A
scding factor be calculated and used to correct for observed differences, forcing the
digiribution of the log ratios to have amedian zero within each dide:

logpRIG® 10pR/G-Cc= 10gR/(kG) ()

Usudly c=logk isthe median or mean of the log-intengty ratios for the genes. Globa median
or mean normaisation amply resultsin averticd trandation of the MA-plot, but does not
account for the intengty- and spatially dependent effects often observed(12,14).

I ntensity-dependent normalisation

A typicd characterigtic seen in microarray datais a srong intensity-dependency. Dye bias
seems to be dependent on spot intensity, with a grester uncertainty of measurements found at
lower intendties. This leads to more unreliable retios for genes with alow total expresson.

Lowessis arobust scatter-plot smoother from the Statistical software package R (16), which
can perform aloca intensity (A) dependent normalisation:

lopR/G® [ogxR/G-c(A)= logpR/(k(A)G) 2
where c(A) isthe lowess fit to the MA-plot (14).

Lowess stands for Locally-Weighted Estimation, aso known aslocaly weighted polynomia
regresson (LWR) and is amethod for fitting curves to noisy deata by robust locdly lineer fits.
The term “robust” refers to the fact that the polynomid isfit usng weighted least squares,
giving more weight to points near the point whose response is being estimated and less weight
to points further away (17).



Print-tip normalisation

A robotic arrayer typicaly has 4 by 4 or 2 by 2 print-heads, every grid of spots being printed
with the same print-tip. Thereisdways arisk of finding systemétic differences between the
print-tips, i. e. differencesin the length or in the opening of the tips or deformetion of some of
the tips after long use. The print-tip groups are also potentid targets for spatia effects on the
dide A print-tip normalisation applies lowess on each grid separately, consdering both
goatid and intengity effects:

lopR/G® 10gR/G-Ci(A)= logR/(ki(A)G) ©)

where ¢i(A) isthe lowessfit to the MA-plot for thei:th grid only, i=1,...,1 and | representsthe
number of print-tips (14,15).

When different dides have substantidly different spreadsin their log-ratios, one can perform
an additiond scale normalisation, enabling comparisons between dide experiments, avoiding
one or more dides having undue weight. This might however increase the variability of the
log-ratios and should be avoided when differences are fairly smdl|(15).

1.3 Selecting differentially expressed genes

After aproper normalisation procedure of data from several microarray experiments, genes
with aggnificantly changed expresson can be found. A problem isthat one usudly has very
few replicates for each gene, but is investigating many genes smultaneoudy (18). Many data
andys's programs sort the genes according to the absolute level of the ratio or
M=log,(Cy5/Cy3). However this gpproach risks giving genes with large variances a too good
chance of being cdled as differentialy expressed. A better dternative isto rank genes
according to the value of the t-gatidtic

t=M/(gQ) (4)

where M is the mean of the M=log,(Cy5/Cy3) for any particular gene acrossa series of n
replicate arrays and s is the standard deviation of the M-vaues. This gpproach protects against
outlier M-vaues, but is not ided. Large t-gatistic can be driven by an unredigticdly small
vaue of s resulting in genes with too small sample variances being called as differentialy
expressed. A suitable compromise between ranking genes according to ratios and t-gatigtics is
to use a penalized t-gtatistic such as SAM or Bayes (9).

1.3.1 SAM - Significance Analysis of Microarrays
Tusher et al (19) suggests forming a pendized t-Satistic d(i)

d(i)= (x(1)2-x()2)/(s(i) + so) )
where x(i);1 and x(i), are the average expression levels for gene (i) in states 1 and 2
respectively and §(i) is the standard deviation of repeated measurements. The penalty, or
“fudge factor”, s is chosen to minimize the coefficient of variaion of d (19).

After computation of d(i) for al genes, permutations of response labels are performed and
d(iperm)=average d(i) on permuted data is calculated. D< d(i)-d(iperm) is set by the user and



defines the number of significant genes. D is chosen to control the False Discovery Rate
(FDR) which isthe expected proportion of errors amongst the genes sdlected as significantly
differentially expressed (Fig. 6) (20).
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Fig 6. SAM Plot with delta 0.53 and FDR = 10.5/71

Input data has the form of an Excd spreadsheet where the first row has information about the
response measurement and al remaining rows have gene expression data, one row per gene.
Examples of response formats are paired data, with Cy5 and Cy3 intensities or one class with
logged ratios Cy5/Cy3 (20) (see Tablel).

Table I. SAM data Example of paired data response format (a) and one class data (b).
a.

Cy3[1] | Cy5[1] | Cy3[2] | Cy5[2]

Gene#1[1050 |1260 |1220 | 1586

Gene#2 | 15063 | 14611 | 14677 | 13943

Gene#3| 2300 |[4830 |2511 |4520

b.

Log2(Cy5/Cy3)[1] | Log2(Cy5/Cy3)[2]
Gene#l|0.27 0.38
Gene#2 | -0.04 -0.07
Gene#3|1.1 0.85

In the case of one class regponse, the set of expression vaues for each experiment are
multiplied by +1 or —1, with equa probability, i.e. a permutation of signs rather than class
labels (20).

1.3.2 Empirical Bayes statistic

An dternative method for finding significant genesis to use an empirica bayesian approach.
Lonnstedt and Speed (18) suggests forming a B (from Bayes)-datidtic for each gene which is
equivalent for the purpose of ranking genes to the penalized t-gatistic

t=M/&a+ s9)/n (6)
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where M is the mean of the M=log,(Cy5/Cy3) for any particular gene acrossa series of n

replicate arrays, s isthe sandard deviation of the M-vaues and a is a pendty (cf. fudge factor

so of SAM, Eq. 5) estimated from <°.

Log Odds of Differential Expression
0
i

0.3 0.0 0.5 1.0

Average M

Fig 7. Empirical bayesian approach. Volcano style plot of lodsratio vs M-plot. Genes with
lods greater than three have been highlighted for follow up and confirmation.

Applying Bayes (Eg. 6) on aset of microarray data, resultsin alist of Bs, or lods, a“Bayes
log posterior odds’. The list provides aranking of genes with respect to the posterior
probability of each gene to be differentialy expressed. It is up to the scientist to choose a

suitable cut-off, the number of genes selected depending on the size, aim, background or other

factors of the experiment (18).

1.3.4 Own unpublished method: Eva

Thisis amethod based on basic probability theory. Looking at the probability of one geneto
end up in the top quarter of the gene list on one array by pure chanceis ¥4 The probability of
the same thing happening on two arraysis 1/4°2, and so on. To get the overal| probability of
your genes being at a specific fraction of the genelist by chance, you multiply the probability
for one gene by the total number of genes on the chip.

The sengtivity of Evaincreases the more replicate arrays you have; the more replicates the
larger fraction you can choose without getting unacceptably many genes cdled by chance.
The following example with arrays of 500 genestriesto illudrate this fact:

Table Il. Unpublished method “Eva”. Example of how #arrays affects the number of genes called by chance

#arrays 3 4 5 3 4 5
up/down definition +1/3 +1/3 +1/3 +1/5 +1/5 +1/5
up/down by chance 37 12 4 8 1.6 0.32

FDR for this method is defined as #genes caled by chance divided by #caled genes.

To generate gene lists from Eva, genes are ranked according to ratio and every geneis

assigned a number corresponding to its place in the ranking list. The most up-regulated genes

are placed in the top and the down-regulated in the bottom of the list. The user definesa
percentile of the gene ligt, which is defined as up- and down respectively. In order to be
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counted as up- or down-regulated, the gene has to be found in the specified percentile in lists
from all arrays.

Genes with to large variance will not gppear on thelist a al, since it is enough with one gene
to drop out of the specified percentile to exclude it from the generated gene list. This could be
avoided by for example excluding one array at the time and gpplying the method on the
remaining data. If a gene appears on dl lists except one, maybeit is reasonable to include it.

The method Eva could be further refined by completing the ratio-ranking lig with aligt
ranking the genes according to variance, for example by asmple t-atistic. Sgnificantly
differentiadly expressed genes should preferably combine a high ranking on the ratio-ligswith
alow ditto on the variance ranking-lig.

1.4 Genetic adaptationsto strength training

Strength training, or more precisdy “short bursts of muscle activity againgt high resistance or
by prolonged stretch beyond normd resting length” (21), causes among other effects
hypertrophic growth of skeletd muscle. This myofiber hypertrophy is characterized by a
generd increase in protein condtituents of the muscle fibers. The hypertrophic processis
partly caused by the cumulative effects of trangent changes in gene expression of specific
genes. The mgor events underlying muscle growth is however ageneral and non-specific
augmentation of protein synthess within the cdls (21)

Mogt of what is known about hypertrophy is derived from anima studies, much often by
dudies of cardiac muscle. Hypertrophy may favour afast-to-dow fiber-type trangtion
associated with shiftsin myosin heavy chain (MHC) isoform expression. In contrast to
endurance training, hypertrophic growth does not induce expression of mitochondria

enzymes. Changes in the expression of the transcriptiond factors c-fos and ¢c-myc, may be
part of a cascade leading to (cardiac) cell hypertrophy. Stretch-induced eventsin skeletd
myofibers appear to be similar to the responses of cardiomyocytes, though the specific growth
factorsinvolved are probably different, with insulin-like growth factors playing an important
role (21).

There are dill avery limited number of studies addressing the question of how human skeletdl
muscle responds to strength training a the molecular level.

2. AIM OF THE PROJECT

Theamwereto

i.) perform a quaity check of if and how the dye label concentration of Cy3 and Cy5
affectsthe qudity of raw data from a cusom made microarray.

ii.) by literature studies find a satisfactory normalisation procedure and gpply it on
data generated from the chip.

iii.)  find dternative atistica methods for identifying differentialy changed genes,
choosing two methods and compare these with an own unpublished dternative.

iv.)  makeabiologica application by using the data analysis above: gene expresson
profile was studied in human skeletal muscle before and after a period of strength
traning.

12



3. MATERIALSAND METHODS
3.1 cDNA microarrays

A custom made human cDNA microarray Myochip 1.0 from ClonTech (Cat. #CS2003) was
utilized. The microarray included 500 sdected genes for cell Sgndling, oxidative stress,
angiogenes's, mitochondria biogenesis, myogenesis, gooptosis, cdl cycling and DNA
husbandry.
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Fig 8. Custom Atlas Glass Microarray (Cat. #CS2003) Myochip 1.0

3.2 Preparation of labelled cDNA

3.2.1 Muscle biopsy and RNA extraction

Percutaneous muscle biopsies from three hedlthy male subjects, aged 25, were obtained at rest
from m. vastus lateralis. Tota RNA was prepared by the acid phenol method: Biopsies were
homogenized 30 sec with a Polytron knifein 1.2 (1 vol.) to 2 ml Denaturating Solution with

0.1 M DTT and 0.5% sarkosyl. 0.1 vol. of 2 M Na acetate (pH 4) was added mixed
thoroughly. 1 vol. of H,O saturated phenol was added and the samples were again mixed well.
0.2 val. of chloroform iso-amyl-acohol (49:1) was added, the samples were mixed and
incubated for 15 min. at 0-4°C. The samples were centrifuged in amicrocentrifuge (4°C) at

10 000g for 30 min. The upper agueous phase was transferred into new 2 ml tubes. To
precipitate, 1 vol. of isopropanol was added and the samples left a -20°C for 30 min. Samples
were centrifuged at 10 000g (4°C) for 30 min and the supernatant was removed. The pellets
were redissolved in 0.3 initid vol. of DS (w/o DTT and sarkosyl). An equd val. of

isopropanol was added and left at -20°C for 1h. The samples were then centrifuged a 10 000g
(4°C) for 30 min. The supernatant was removed and the pellets were washed with 75% ice-
cold ethanol. Findly the RNA was dissolved in 50 m H,O and stored at —80°C until cDNA
synthesis and labelling.
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3.2.2 RNA quality and quantification

RNA was quantified spectrophotometrically by absorbance at 260 nm and checked for protein
content by examining the Azso/A2so-ratio. RNA integrity was determined by 1% agarose gel
electrophoresis. RNA from the three subjects was pooled and a Bioandyzer (Agilent
Technologies, Cdifornia, USA) was used to confirm the qudity- and quantity check.
AzeolAzgo-ratio was above 1.9 and el ectrophoresis showed intact ribosoma 28S and 18S RNA
bands. Bioandyzer rRNA ratio (28518S) was 1.74, well within the reccomended range

3.2.3 cDNA Synthesisand Purification

Indiirect labelling was based on adightly modified version of AtlasO PowerScriptO
Fluorescent Labdling Kit from ClonTech (#:K1860-1). 2.25 ng and 5ng of total RNA was
used per labdlling reaction, 4 samples of each. For each reaction, aMasterMix of 7.2 m

5X Firgt Strand Buffer, 3.6 mi 10X dNTP, 3.6 mi DTT, 1.8 m H,0O, and 1.8 m PowerScript
Reverse Transcriptase was prepared and kept on ice. Because of the rdlatively low
concentration of our RNA, the MasterMix described above is 1.8 times the volume
recommended in the manufacturers protocol. 2 m Random Primer Mix and 1 mi cDNA
Synthesis Cortrol was added to each RNA sample, but no extra H,O needed to be added to
reach the proper reaction volume. The samples were heated to 70°C in a PCR thermalcycler
for 5 min, cooled to 37°C after which 18 ml MasterMix was added per reaction and and left to
incubate at 37°C for 1 hr. The tubes were then incubated at 70°C for 5 min and spinned
briefly in amicrocentrifuge to collect contents. After cooling tubesto 37°C, 0.2 m Rnase H
was added and the samples were incubated at this temperature for 15 min. Tubes were
spinned and 0.5 m EDTA (pH 8.0) and 2 m QuickClean resin was added. The samples were
vortexed for 1 min. 0.22-m Spin Filters were inserted into collection tubes, and each sample
was trandferred into afilter. The tubes were soinned at maximum speed for 1 min. The Spin
Filters were removed and 2.2 ml 3M Sodium Acetate and 55 m ice cold 99% ethanol was
added and samples were vortexed. Tubeswere placed in -20°C freezer to precipitate the
cDNA and then spinned for 20 min in amicrocentrifuge (4° C). After pipeting off the
supernatant, pellets were washed in 70% ethanol and then dissolved in 10 m 2X Fuorescent
Labding Buffer.

3.2.4 Fluor escent Dye Coupling

According to the manufacturers recommendations, the labelling kit was supplemented with
Cy3- and Cy 5 Mono-Resactive Dye Pack (Amersham Pharmacia Biotech #PA23001 and
#PA25001). 5 mM stock solutions of fluorescent dye were prepared by adding 45 m DM SO
to the dye vids, which were then vortexed and spinned. 0.5 mi Coupling Reaction Control
Oligo was added to each cDNA sample. 10 m dye was added to the samples and these were
then mixed well and placed & room temperature, wragpped in duminium foil, for 1 hr. 2 m 3M

Sodium Acetate and 50 m 99% ethanol was added and the samples placed in a-20°C freezer
for 2 hr to precipitate the labelled target. Samples were spinned for 20 min and the

supernatant pipeted off. The pellets were washed in 70% ethanol and dissolved in 100 m H,O.
3.2.5 Target Purification
The labdled target was purified using Qiagen’s Quiaguick PCR Purification Kit (#28104)

with slicagd spin columns. The protocol was modified according to the manufacturers.
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ingructions, each wash step was performed atotal of three times, using 650 m of buffer for
each wash. In the eution step, eution was performed twice with 30 m Buffer EB dlowing the
column to stand for 1 min after adding the buffer. Notice that if the buffer used to bind the
DNA to the Qiagen PCR purification columnsis not dightly acidic (less than pH 7) the cDNA
will bind poorly to the column, resulting in low yieds. Also dution efficiency is dependant on
pH, maximum dution efficiency being achieved between 7.0 and 8.5.

3.2.6 Dye label measurements

The dye label concentration was determined in aNanodropO ND-1000 Spectrophotometer
(NanoDrop Technologies, Inc). Totd dye quantity in the 5 ng-samples was 66, 54, 54 and 42

pmol and in the 2.25 ng-samples 18, 18 and 12 pmol. One of the 2.25 n-samples was below
detectable concentration.

3.3 Hybridisation

3.3.1 Hybridisation

Two hybridisations were performed for each RNA quantity, resulting in atotd of 4
sdf-againg-saf experiments. Microarray dides were hybridised according to the Atlasi
Glass Microarrays User Manud from ClonTech: To yied afind volume of 1.9 ml of target
and hybridisation solution, 1.78 ml of GlassHyb Hybridisation Solution per dide was warmed
to 50°C and the |abelled targets (2 x 60 n) were then added. The solution was added to the
Hybridisation Chamber and left to hybridise over night at 50°C.

3.3.2 Washing microarray dides

Washing of the microarrays was performed at room temperature according to the same

AtlasA Glass Microarrays User Manua: The washing procedure was performed in four steps,
each step for 10 minutes on an orbital sheker with the Wash Containersin an upright position.
Wash 1 was performed in 22 ml GlassHyb Wash Solution (=2X SSC + 1% tween), wash 2ain
2 ml GlassHyb Wash Solution + 20 ml 1X SSC, wash 2b againin 2 ml GlassHyb Wash
Solution + 20 ml 1X SSC and wash 3in 22 ml of 0.1X SSC. Findly the dides were removed
from wash 3, and rinsed briefly under running digtilled water. Drying of the dides was
accomplished through dipping them quickly in iso-propanol and blowing the moisture off the
surface with N gas.

3.4 Evaluation of chip quality vsdyelabel concentration

In an attempt to decide how the dye labe concentration affected the chip quality, different key
properties of the chips were calculated and visudised in an Excd-spreadsheet. More specific,
the dides were examined with respect to: spots with intensities below 2- and 4 times
background intengity, saturated spots, flags, oot intendity expressed as meant, mediant and
25- and 75 percentile intengty, background intensity expressed as mean and median. The
median spot intensity was dso compared to overal median background intensity aswell asto
itsloca background.
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3.5 Data analysis
3.5.1 Scanning

The hybridised dides were scanned with the GenePix? 4000B scanner (Axon Instruments,
Cdifornia, USA). PMT settings were chosen to balance the two channdls, using the entire
dynamic range (0-65535), but trying to avoid saturation. An image of each of the Cy3 and
Cy5 channels was generated and saved as a 16 hit TIFF file.

3.5.2 Image extraction and data analysis

GenePix Pro 3.0 Microarray Andysis Software (Axon Instruments, Cdifornia, USA) was
utilized to extract data from the TIFF files. A grid pattern was placed on the image to mark
the location of the spots. Subjectively judged bad quaity-spots were manualy marked with a

“flag.

The GenePix Pro software measures the pot intengity of Cy3 and Cy5 and additionaly
computes the local background around each spot. The resulting calculations were saved as an
Excd-type spreadsheet for further anayses.

The Cy5/Cy3-ratio was ca culated from median pixe intengties of the spot. No background
subtraction was used, as it has shown to increase variation (22).

3.5.3 Nor malisation

The raw data was visudised in aMA-plot as described in the background section. The
datistics language R together with the package sma (Statigtics for Microarray Analysis) were
used to perform various forms of normaisations and data analys's (16).

The normaised M and A vaues were exported to an outpuit file that can be openedin e.g.
Excd.
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e

Fig 9. Data analysis The R user interface (version 1.3.1)
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3.5.4 Statistics

The normalised data was examined using three different satisticd methods, “ Eva” , SAM
(Sgnificance Anayss of Microarrays) and Bayes. The SAM andysis was carried out usng
the Excd Add-in SAM, Bayes was carried out in R and Eva was performed “manualy” in
Excd.

In order to compare the outcome and look for concordance between the various statistical
methods, a“FDR” for Eva's method was caculated based on 1/3 and 1/5 chosen as up/down-
limits by dividing #genes cdled by chance with #called genes. Gene lists from SAM was
generated using the same FDR. Asthere is no evident way of caculaing a FDR for the Bayes
method, the mean number of the sum of up- and down regulated genesin Eva s and SAM
approach was used for comparison.

Normdised intengties were caculated from M and A vaues according to the definition of M
and A:

M= log,Cy5/Cy3
A=log(qCy5*Cy3)
b Cy5=2"(A+0.5*M), Cy3=2"(A-0.5*M),

The SAM gene lists were compared to Bayes and Eva

3.6 Biological application of data analysis procedure

Six hedthy individuds performed weaght lifting with emphags on leg training, threetimes a
week, under supervison of apersond trainer, for athree weeks period. Needle muscle
biopsies were taken from m. vastus lateralis 12 hours before and 12 hours after the last
training sesson. Tota RNA was prepared as described above. Preparation of labelled cDNA
followed the same procedure as described above, using 5 ng of total RNA per reaction. The
biopsy taken before training was labelled with Cy3 and the after training biopsy was labelled
with Cy5. Hybridisation of the chips and data analyss followed the procedure described
above.
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4. RESULTS
4.1 Evaluation of chip quality vs. dye label concentration

Row 3in Table 1l a and b. show that the same amount of total RNA resulted in somewhat
different dye labe quantities;, 2.25 g in the range of 12-18 pmoal, 5 g in the range of 42-66
pmol. Moreover there was no systemetic difference between the incorporation efficiency of
the two fluorophores during indirect cDNA labdlling.

Row 6 and 7 show that increasing the amount of RNA from 2.25ng to 5ng, makes the fraction
of gpotswith intengties below 2 times the background in the red and green channel decrease
from 45% to 36% and spots below 4 times the background decrease from 60% to 56%.
Consequently, using more RNA gives fewer (-50)-flags, i.e. spots too weak to be found by
GenePix. The number of spots over saturationis primarily affected by the skills of the person
setting PMT voltage, and cannot be related to dye label concentration.

The tables dso show that doubling the RNA gives about a 1.3 increase in median spot

intengity. The corresponding increases for the 25:th and 75:th percentile spotsare 1.3 and 1.5
respectively. The median background intengty is affected by the RNA quantity by

goproximately the same factor as the median spot intendity, 1.2. Removing the Cy3

background from chip2, which has a small green fluorescent stain, gives an increase of an

even more Smilar magnitude (1.25). The median spot intengity-median background ratio was

14% higher in the 5Sng-chips.

Table lll. A display of different key properties of the four self-against-self hybridisations, carried out using different amounts of
total RNA per labelling reaction. PMT gives information about scanner settings. Norm.factor:RatioOfMed is the numerical
constant the ratios (of median spot intensities) should be divided with in a global normalisation. # spots>65535 tells us whether
PMT was set too high. Spots are flagged (-50) when GenePix fails to find them, while sub-standard spots are flagged (-100).
Median spot is the median spot intensity. Spot 25:th -and 75:th percentile give the intensity of these spots, which together with

Median spot are trying to display the intensity distribution. Background median spot is the local background of the median spot.
Median background is the median of all local spot backgrounds on the chip.

a. shows data generated from chip 1 and chip 2, with 2.25 g of total RNA per reaction.

1.Total RNA 2.25 ug Mean
2. 1Cy5 1Cy3 2 Cy5 2 Cy3

3. Dye label quant. [pmol] 18 18 ? 12

4. PMT 740 690 750 700

5. Norm.factor:RatioOfMed 0,91 1,06

6. spots<2xbackground 206 223 257 257 236
7. spots<4xbackground 285 302 319 354 315
8. spots>65535(=maxint) 5 3 7 1

9. (-50)-flags 99 93

10. (-100)-flags 2 71

11.Median spot 677 701 613 841 708
12. Spot 25:th percentile 289 392 321 437 360
13. Spot 75:th percentile 3249 2809 2257 2314 2657
14. Backgr. median spot 206 419 360 261 312
15. Median background 211 255 223 295 246
16. Mean background 223 289 288 428 307
17.Medspot/Backg. medspt 3,29 1,67 1,70 3,22 2,47
18.Medspot/Med backgr 3,21 2,75 2,75 2,85 2,89
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b. shows chip 3 and chip 4, with 5ng of total RNA.

1. Total RNA 5 ug Mean
2. 3Cy5 3 Cy3 4 Cy5 4 Cy3

3. Dye label quant. [pmol] 54 54 42 66

4. PMT 750 700 770 720

5. Norm.factor:RatioOfMed 0,68 1,34

6. spots<2xbackground 166 205 199 191 190
7. spots<4xbackground 258 315 299 293 291
8. spots>65535(=maxint) 25 4 8 9

9. (-50)-flags 25 63

10. (-100)-flags 4 1

11. Median spot 1093 806 811 1047 939
12. Spot 25:th percentile 454 477 389 538 465
13. Spot 75:th percentile 5746 2963 3073 3992 3944
14. Backgr. median spot 260 289 283 408 310
15. Median background 264 290 259 334 287
16. Mean background 273 295 261 341 293
17. Medspot/Backg.medspt 4,20 2,79 2,86 2,61 3,12
18. Medspot/Med backgr. 4,14 2,78 3,13 3,13 3,30
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4.2 Normalisation

Cy3/Cy5-scatter plots of extracted intensity raw data from the four chips (Fig 10) showed that
the balance between the red and the green channd varied between the chips, indicating the
need for agloba normalisation, setting the median ratio to zero. Further on, you could see the
importance of using appropriate PMT settings to avoid spot saturation, not to underestimate
ratios.
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Fig 10. Cy3/Cy5 scatter plots of raw data for the 4 self-against-self hybridisations. In chip3 more spots have reached
saturation than in the other chips.

When data was further andysed in R (Fig 11), a strong intengity dependency of ratios was
observed in MA-plots of raw data, giving low vaues of log ratio M for low mean log dye
intendity A spots. Data was plotted in different steps of the normalisation procedure;
exploring raw-data, lowess normalised data and print-tip lowess normalised data. Based on
observation of the MA-plots, awithin-print tip group lowess normalisation was performed.
This normdisation seemed to diminate the intensty-dependancy of A, fitting data around
log-ratios of zero.
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Fig 11. MA-plots of data from the 4 self-against-self hybridisations, showing the average M-value vs. the average mean log dye
intensity for each gene. Different steps in the normalisation procedure: The upper row displaying raw data, the middle row is
data after lowess normalisation and the last row shows data after print-tip lowess normalisation. Notice how the intensity

dependency of A seems to be eliminated after the print-tip lowess normalisation, the data being fitted around log-ratios of zero.
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Histograms over log ratios confirmed a satisfactory normalisation procedure, with ratios
centered around zero after print-tip lowess normdisation (Fig 12) . Histograms dso showed
that no dide differed substantidly in its spread of log-ratios, making a scale normdisation

redundant.
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Fig 12. Histograms showing ratios log2(Cy5/Cy3) before (left) and after (right) print-tip lowess normalisation, chip 1-4.
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4.3 Statistics

Using Eva's method with 1/3 and 1/5 chosen as up/down-limits resulted in two ligs. The
narrower limit of 1/5 resulted in 16 genes cdled as up- and 22 genes called as down regulated.
Setting the limit to 1/3 generated 48 genes on the up side and 40 on the down side. Defining
FDR as #genes cdled by chance divided by #cdled genes gave the following two FDRs

#oenes caled by chance 1/5) =2 x (524/5U4)= 1.68
#called genesys)= 16+22 = 38
P FDR(1/5=13/88=0.044, i.e. 4.4%

#genes caled by chance (1/3) =2 x (524/3U4)=13
#ealled genes(1/3)= 48+40 = 88
P FDR(1/3=13/88=0.147, i.e. 14.7%

Column 8in Table IV. show that 76% of the genes cdled by SAM, run with Cy3- and Cy3
intengties as response format (“SAM int.”), are also called by Eva and Bayes at FDR 4.4%.
At ahigher FDR, only 61-65% of the SAM int.-genes are found by Eva and Bayes. Except for
Evaa FDR 14.7%, more genes are cons stently found to be down- than up-regulated, with the
greatest imbalance between up and down for SAM int. a FDR 4.4%.

To examine whether the intengity dependency of og ratios was diminated, the median
intengty (of the mean intendty of the four chips) of the top ten most up- and down regulated
geneswas caculated. Looking at the genes called by SAM int., gave amedian intensity of
9.29 for the down-regulated genes, and 11.14 for the up-regulated. These figures can be
compared to the overal median spot intengty of 9.66.

Table IV. Statistics Comparison of three different statistical methods (column 1), using FDR 4.4 and 14.7% respectively
(column 2). Column 3-4 gives the number of genes being called as up- and down regulated, with the total number of changed
genes in column 5. As Bayes approach only ranks the genes with respect to probability of being differentially expressed, the
number of called genes was defined as the mean number of the sum of up- and down regulated genes in Eva’s and SAM int.
approach. The remaining columns show how well the methods agree with SAM int. (highlighted squares), column 6-8 giving the
absolute number and column 9 the percentage of SAM int. genes showing up on the lists of the other methods.

1. 2. 3. 4. 5. Total 6. up fr 7.down fr. 8.Total f. 9. % genes

FDR% Up Down genes SAM int. SAM int. SAM int. fr SAM int
SAM int. 4.4 2 15 17 X X X X
SAM int. 14.7 44 61 105 X X X X
Eva 4.4 16 22 38 1 12 13 76
Eva 14.7 48 40 88 26 38 64 61
Bayes X X X 28 1 12 13 76
Bayes X X X 97 25 43 68 65
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4.4 Biological application: significantly changed genes

Table V. Biological application Genes, identified by SAM and Bayes, with significantly
changed expression in six individuals who performed strength
training for three weeks.

Up-regulated genes Function Cy5/Cy3 M

adrenergic, alpha-2B-,receptorSHC (Src homology 2

domain-containing) transforming protein 1 enzyme inhibitor 1.33 0.41

desmin muscle structure 1.32 0.40

thioredoxin redox reactions 1.20 0.26

serum response factor (c-fos serum response element-

binding transcr. factor) transcription 1.21 0.27

peroxisome proliferative activated receptor, alpha transcription 1.22 0.29

general transcription factor 1IH, polypeptide 2 (44kD

subunit) transcription 1.20 0.26

xeroderma pigmentosum, complementation group A DNA repair 1.78 0.83

Down-regulated genes

cyclin A2 cell cycle regulator 0.48 -1.06
energy-intermediate

uncoupling protein 2 (mitichondrial, proton carrier) enzyme 0.72 -0.48

cyclin B1 cell cycle regulator 0.74 -0.44

MADS box transcription enhancer factor 2, polypeptide A

(myocyte enhancer factor 2A) transcription 0.81 -0.31

polymerase (DNA directed), delta 2, regulatory subunit

(50 kD) replication 0.80 -0.32

heat shock 70 kD protein 1B protein assembly 0.52 -0.95

thymine-DNA glycosylase DNA repair 0.79 -0.33

early growth response 1 transcription 0.76 -0.40

integrin, alpha 1 collagen receptor 0.79 -0.34
muscle growth (neg.

growth differentiation factor 8 reg.) 0.82 -0.29

growth arrest and DNA-damage-inducible, alpha DNA repair 0.84 -0.25

Running biological datain SAM And Bayes resulted in gene lists where quite afew of the top
genesin the ligs from the sdf-againg-self hybridisation appeared. Using the self-againgt- Hf
hybridisation-ligts as afilter, removing these genes from the biologica dataligts, resulted in
thelist above. The genesin Table V. were identified by both SAM and Bayes as differentialy
expressed a a FDR of 14.7%, with the down-regulated genes consistently assigned higher

statistic scores.

The down-regulated genes have ratios, in the magnitude of ~0.5 to 0.85, up-regulated ditto

have ratios of ~1.2-1.8. Up-regulated genes were related to the activity of transcription,

enzyme inhibition, muscle sructure and DNA-repair. An attenuated activity was found from
genes related to the groups of cdl cycle, energy metabolism, transcription, replication, DNA-

repair etc.

In the case of the biologicd data, looking a the median intengity log(Cy5* Cy3) of the top ten

positive and negative genes caled by SAM, gave vadues of 10.11 (9.4-11.1) for the ten
negative and 11.35 (9.9-12.6) for the top ten positive. The overal median of mean spot

intengties was 10.46. Corresponding vaues in unlogged format were 1100 (680-2200),

(960-6200) and 1400 respectively.
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5. DISCUSSION

Thisinvestigation shows that dye label incorporation in the magnitude of 15 pmol per dye,
results in chip data where 55% of the spots have both red and green channd intengities 2
times higher than background. An increase of dye label quantities to gpproximately 50 pmoal,
make the proportion of spots having a signa-to-background ratio greater than 2, increase to
65%. These figures are interesting with respect to how you should interpret information from
the Nanodrop spectrophotometer, deciding if your labelling is satisfactory enough to dlow a
subsequent hybridisation. There are no earlier published studies relating dye label quantity to
spot intengities, but reading protocols from various microarray labs give recommendations of
dye incorporation per sample ranging from >200 pmol (23), 30-60 pmol (24) and most
conggtent with this study; optima range 20-50 pmol, minima 15 pmol (25). Looking at our
data, minima dye incorporation recommendation could be set to 10 pmal.

MA-plots (see Fig. 6) of raw data showed a strong intensity-dependency of ratios, an
intengty- dependency, which was mogt effectively diminated by a print-tip lowess
normalisation. This normdisation method iswell supported in literature (2, 9-15, 18). What
might contradict atota success of this print-tip lowess normalisation, is that median spot
intengty of the ten most up-regulated genesis dightly higher than the total median spot
intengty, while the median spot intensity of the ten most down-regulated genesis dightly
lower. This meansthat there may be an overestimation of down- and up-regulated genes.

The gatistical methods SAM and Bayes, for finding differentialy expressed genes showed a
good concordance, especidly at low FDRs. This agrees with both literature (9,18,26,27) and
the fact that the two methods are based on the same principle of a pendized t-atistic. Despite
the fact that our own unpublished method “Eva’ is based on completely different principles
than SAM and Bayes, the concordance between this method and SAM was dmost as good as
the agreement between SAM and Bayes. The principa advantage of Evais perhapsits
ampliaty and sraightforwardness. Rather than replacing some of the very sophisticated
datistical methods, it can serve as a useful tool to get afast grip of what your detain

indicating.

Common to dl three atistica methods is that genes with too large variance will drop, or not
gopear a dl inthe geneligs. If you are unlucky, large variance is caused by bad spot qudity
on one array. To avoid missing such a gene, an gpproach is to exclude data from one (or
more) aray a the time, goplying the method on the remaining data. If a gene appears on al
lists except one, maybe it is worth taking a closer look at.

Itis hard to give a satisfactory explanation to why we found genes with sgnificantly changed
expression in this sdf-againg-self experiment, except for a certain number that would be
expected to appear by chance. If there were something wrong with the spots of these genes, it
would be reasonable to look more carefully at them if they appeared as top candidatesin a
biologica experiment. If they tend to bind more strongly to one of the colours Cy3 or Cy5, a
dye-swap filter, i. e. to use two hybridisations for two mRNA samples, with dye-assgnment
reversed in the second hybridisation, would hopefully remove this effect.

This study focuses on methodological aspects of microarrays and microarray data. In addition
an gpplication of the data analys's methods on abiological experiment was performed: Six
individuas performed strength training for a three weeks period. The identified genes
represent severa functiond classes and it is hard to see a pecific pattern. Despite the fact that
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hypertrophic growth is not expected to affect expression of mitochondrid proteins (21), we
found down-regulation of two genes encoding mitochondrid proteins, uncoupling protein 2
and heat shock 70 kD protein 1B. Confirming literature reporting that changesin the
expression of ¢c-fosinduces hypertrophy (21), we found up-regulation of a c-fosserum
response element-binding transcription factor.

Previous work characterizing gene expresson profile in human skeletd muscle after strength
traning islimited. Roth et al. (28) used acDNA microarray representing 4,000 human genes,
and managed to identify 69 genes as differentidly expressed (>1.7-fold) in response to
strength training. None of these genes do however correspond to our findings. A similarity
between our dataand Roth’ s findings, is that amgority of the most differentidly expressed
genes were down-regulated. One might however question the reiability of Roth’s data, Snce
he does not perform an adequate data andysis with respect to normalisation and has no
datistica tools for selecting the genes. Another difference between our and Roth’s study was
the length of the training sudy: The study of Roth examined the effects of strength-training

for 9 weeks, while our study was a short-term training study of 3 weeks.

The identified genes showed quite modest ratios, maybe because of atoo wesk stimulus or
because of the generd nature of the mgor events underlying muscle growth (21). Another
problem in skeletd muscle array experimentsis the reported high interindividua variability,
which can obscure genera patterns of expression (28,29).

5.1 Conclusions

The custom made microarray Myochip 1.0 provides a vdidated tool for the sudy of gene
expresson in human muscle biopsy materid. To assure qudity of raw data, dye-labe
concentration should be measured (i.e. in the Nanodrop spectrophotometer), minima 10 pmol
CyDye incorporation per sampleis recommended. Normalisation of raw data is necessary to
correct for systematic variation of ratios, print-tip group lowess normaisation gppearing asa
good choice. After normaisation, two well-working satistical methods to determine
differentially expressed genes are SAM and Bayes, both showing high concordance with our
own aternative “Eva’. The data procedure has been tested and works well on biologica data,
predicting Sgnificant gene expression profile changes in response to strength training.
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APPENDIX |.
Differentially expressed genesin the four self-against-salf hybridisations

Top 50 ligt of genes called as differentially expressed by both SAM and Bayes at FDR 14.7%,
in the order they were cdled by Bayes satistic.

Gene name ClonTech ID Ratio
neutral sphingomyelinase (N-Smase) active Ala2 0.63
gap junction protein, alpha4, 37 kD B4g2 0.60
protein kinase, AMP-activated, gamma 2 n C3a2 0.70
polymerase (DNA directed), delta 1, cata A3a2 0.64
tight junction protein 1 (zona occludens) Cla2 0.55
X-ray repair complementing defective Adg2 0.53
TATA box binding protein (TBP)-associate A3fl 1.08
peroxisome proliferative activated receptor C3cl 0.97
creatine kinase brain B1d7 1.27
Janus kinase 3 (a protein tyrosine kinase) B2e3 1.16
aldehyde dehydrogenase 2, mitochondrial C3ab6 0.80
tumour necrosis factor superfamily Cla3 0.83
heat shock 27kD protein 2 B2a2 0.65
ubiquitin C B2c7 111
TRAF and TNF receptor associated protein Cibl 0.97
transcription factor 4 Clc2 1.07
TATA box binding protein (TBP)-associate A3eb 1.46
proliferating cell nuclear antigen Bla5 0.96
histone deacetylase 5 Bla3 0.95
natriuretic peptide precursor B C3a3 0.99
myosin, heavy polypeptide 1, skeletal muscle C2a2 0.94
tumour protein p53 (Li-Fraumeni syndrome) A3d5 0.99
ubiquitin protein ligase E3A (human papi B4a2 0.99
estrogen-related receptor gamma C2b6 0.95
microsomal glutathione S-transferase 1 B4b6 0.98
glucagon B2b5 0.96
gap junction protein, alpha 5, 40kD (con B4g4 0.91
cellular retinoic acid-binding protein 2 B2c2 1.13
fibroblast growth factor receptor 4 Ald7 0.99
nuclear cap binding protein subunit 1, 8 AAfT7 0.99
postmeiotic segregation increased (S. ce A3d6 0.99
ribosomal protein S9 B2c3 1.06
tumor necrosis factor receptor superfami C1b2 0.99
nuclear factor of activated T-cells, cyt A2d2 1.00
ELK1, member of ETS oncogene family B3c5 0.99
CcAMP responsive element binding protein C2a5 0.97
protein phosphatase 3 (formerly 2B), cat B3a3 0.81
uncoupling protein 3 (mitochondrial, pro Bled 0.99
neuropeptide Y receptor Y1 C2d6 1.50
tyrosine 3-monooxygenase/tryptophan 5mo Albl 0.92
protein kinase, AMP-activated, beta 1 no Blc2 0.94
adrenergic, alpha-1B-, receptor C2d5 0.98
nuclear respiratory factor 1 C3c3 1.10
retinoic acid receptor, alpha B2cl 0.99
protein disulfide isomerase B4a6 0.91
glutathione peroxidase 1 B4b2 1.07
glucocorticoid modulatory element bindin B2a7 1.26
nitric oxide synthase 1 (neuronal) C2a4 0.83
ubiquitin E3b2 1.36
unactive progesterone receptor, 23 kD B2b2 0.96
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